精东传媒

ARC-DECRA Fellow Dr Javad Foroughi
ARC-DECRA Fellow Dr Javad Foroughi

Breakthrough gives artificial muscles superhuman strength

Breakthrough gives artificial muscles superhuman strength

UOW researchers in global collaboration to develop exciting new material

Putting 鈥渟ocks鈥 on artificial muscles made from inexpensive materials helps them produce 40 times more flex than human muscle, a  has found, featuring researchers from the 精东传媒 of 精东传媒 (UOW) at the (ACES).

UOW researchers from ACES joined with international partners from the USA, China and South Korea to develop sheath-run artificial muscles (SRAMs), that can be used to create intelligent materials and fabrics that react by sensing the environment around them.

It builds on the work over the past 15 years by researchers from UOW and their international colleagues who have invented several types of strong, powerful artificial muscles using materials ranging from high-tech carbon nanotubes (CNTs) to ordinary fishing line.

The latest version of the muscles feature a sheath around a coiled or twisted yarn, which contracts (or 鈥渁ctuates鈥) when heated, and returns to its initial state when cooled. The outside sheath is like a close-fitting sock and absorbs energy to drive actuation of the muscle. The muscles can also operate by absorbing moisture from their surroundings.

The new SRAMs are made from common natural and man-made fibres, such as cotton, silk, wool and nylon, which are cheap and readily available.

ACES Chief Investigator Senior Professor said the team wanted to improve upon its previous artificial muscle work, which relied on coiling and twisting more sophisticated materials like carbon nanotube (CNT) yarn.

Senior Professor Geoffrey Spinks demonstrates the artificial muscles

ACES Chief Investigator Senior Professor Geoffrey Spinks. Photo: Paul Jones, UOW

鈥淲hile there鈥檚 no doubt carbon nanotubes make wonderful artificial muscles, CNT is also a very expensive product. Our latest work utilises inexpensive, commercially available yarns with a CNT polymer coating for the sheath,鈥 Professor Spinks said.

鈥淧reviously, we were applying energy to the entire muscle, but only the outer part of the fibre was responsible for actuation. By placing a sheath on the muscle, we can focus only that energy on the outer part of the fibre, and convert this input energy more quickly and efficiently.鈥

ARC-DECRA Fellow and lead Australian researcher Dr explained that the application possibilities for SRAMs are diverse.

鈥淲hen we talk artificial muscles, we鈥檙e not just talking about a technology as a replacement for muscles in the body. These muscles offer some exciting opportunities for technologies where the artificial muscles intelligently actuate by sensing their environment,鈥 Dr Foroughi said.

鈥淧icture these muscles being woven into comfort-adjusting textiles that cool in summer and warm in winter depending on their exposure to temperature, moisture (like sweat), and sunlight, or as smart controlled drug release devices for localised drug delivery through the actuation of valves that control the flow of liquids depending on their chemical composition or temperature.鈥

ARC-DECRA Fellow Dr Javad Foroughi demonstrates the artificial muscles.

Dr Javad Foroughi says the artificial muscles could find uses in replacement for muscles, comfort-adjusting textiles and smart controlled drug release devices. Photo: Paul Jones, UOW

ACES Director Distinguished Professor said this work is an excellent example of the importance of global collaboration in delivering efficient, effective and high impact advances in research and innovation.

鈥淭he success of our Centre鈥檚 work on artificial muscles is the result of our highly skilled researchers being important contributors to a diverse and multidisciplinary team assembled from across the globe. Building these links enables the realisation of exciting new technologies,鈥 Professor Wallace said.

This work is published in the journal , and includes collaboration by the 精东传媒 of 精东传媒, the 精东传媒 of Texas at Dallas (USA), Donghua 精东传媒 (China), and Hanyang 精东传媒 (South Korea).

ABOUT THE STUDY

The paper 鈥樷 is published in Science on Friday 12 July.

The research was funded by several sources: Air Force Office of Scientific Research, Office of Naval Research, National Science Foundation, Robert A. Welch Foundation, Australian Research Council, National Research Foundation of Korea, and the Science and Technology Commission of Shanghai Municipality.